State of Rust 2016

IIIIIIIIII

Rust Is one year old!

11,894 commits by 702 contributors
88 RFCs merged

24+ compiller targets introduced

9 releases shipped

1 year of stability delivered

Rust In production

&8 Dropbox S
FTHCORE
(+) TILDE
AppSignal i
mozilla @ OneSignal

hitps://www.rust-lang.org/friends.html

Focus after 1.0

* Branching out: taking Rust to new places
* Doubling down: infrastructure investments

e /Zeroing In: closing gaps in our key features

Embedding Rust

No runtime, zero cost FFI, portable

Introducing Helix
Rust + Ruby, Without The Glue.

panic!

* Bugs happen i(

e Stack unwinding by default

* Undefined behavior going into C
* |[solation boundaries

std::panic

pub fn catch unwind<F, R>(f: F) -> Result<R>
where F: FnOnce () -> R + UnwindSafe

* Not one, but two RFCs!
» Allows propagation of errors at boundaries
* |s not a shift in Rust’s error handling

-C panic=abort

 Can't always recover from error

e Can't always implement unwinding

 "Landing pads” are extra code to generate
* 10% faster compiles

e 10% smaller binaries

Compiler targets, oh my!

* b targets with binaries at 1.0.0
* 30 targets with binaries today
e MSVC is now a Tier 1 platform
* 4.5 GB of artifacts every night

e MIPS, ARM, AArche4, PowerPC, NetBSD, FreeBSD,
Rumprun, Android, iOS

W Uy N A Wy

Ok, what now?

|'//‘\

Ay Did someone say static binaries?

curl https://sh.rustup.rs | sh
rustup target add x86 64-unknown-linux-musl
cargo new foo && cd foo
Cargo builld ——target x86 64-unknown-linux-musl
1dd target/debug/foo

not a dynamic executable

Down to busIiness

S rustup target add arm-linux-androideabi
S Cargo build ——TLarget arm-linux-androideabi

error: linking with "cc failed

« NDK management
» Cargo configuration

MIR"

Today Tomorrow
Rust Source Rust Source
l Parsing and Desugaring l Parsing and Desugaring
HIR HIR
Type checking l Typé ¢hecking
MIR
Borrow checking
Borrow checking
Translation o
Y Optimization
LLVM IR LLVM IR
l Optimization l Optimization

Machine Code Machine Code

Why MIR?

Faster compile times
Faster execution times
More precise type checking

Engineering benefits

Simplitying Rust

for elem 1in vec {
process (elem) ;

J

Simplitying Rust

for elem 1n vec {
process (elem) ;

4

let mut 1ter = vec.into 1ter();
while let Some(elem) = 1ter.next ()
process (elem) ;

J

J

Simplitying Rust

let mut 1ter = vec.into 1iter();
while let Some (elem) = 1ter.next () {
process (elem) ;

&

J

let mut i1ter = vec.into iter();
loop {
match 1ter.next () {
Some (elem) => process (elem),

None => break,

Simplitying Rust

let mut i1ter = vec.1into 1iter();
loop {
match 1ter.next () {
Some (elem) => process(elem),

None => break,

- 3

let mut 1ter = Intolterator::into 1iter (vec);
loop {
match ITterator::next (&mut i1iterator) {
Some (elem) => process(elem),

None => break,

Simplitying Rust

let mut i1ter = Intolterator::into 1iter (vec);
loop {
match Iterator::next (&mut i1terator) {
Some (elem) => process(elem),
None => break,
} &
}
let mut i1ter = Intolterator::into 1iter (vec);
loop:
match Tterator::next (&mut iter) {
some (e) => { process(e),; goto loop; }

None => { goto break; }

break:

Control-tlow Graphs

iterator = IntoIterator::into iter (vec)

v

match IntolIterator: :next (&mut iterator)

None l Some

v

(Break edge) process (elem)

(Loop Edge)

SImplitying match

match Iterator::next (&mut 1ter) {
Some (e) => process(e),
None => break,

SImplitying match

switch tmp {
some => {
let ¢ = (tmp as Some) .0;
process (e) ;
goto loop;

J
None => goto break,

Drop

iterator = Intolterator::into 1iter (vec)

!

tmp = Intolterator::next (&mut iterator)

switch tmp

None

v

l Some

elem = (tmp as Some) .0

process (elem)

drop (iterator)

Drop

iterator = Intolterator::into iter (vec)

!

I S R R S S S ————

drop (iterator)

tmp = Intolterator::next (&mut iterator)
switch tmp
None l Some
elem = (tmp as Some) .0

\/

process (elem)

drop(iterator)

A

Drop flags

fn send 1f (data: Vec<Data>) {
1f some condition (&data)
send to other thread(data);

J
post send();

Drop flags

if some condition (&data) true >

send to other thread(data)

false

post send()

drop (data)

return

Drop flags

data 1s owned =

true

if some condition (&data) >

true

false

send to other thread(data)

data is owned = false

post send()

true

if data i1s owned? »| drop (data)

l false

return

|
\

TR

/O In std

Blocking APIs in std::fs, std::net, ...
Read/Write reports errors on ‘would block’
Composing /O is difficult

* Accepting a connection with a timeout

* Waiting on one of two |/O events to happen

carllerche/mio

Metal I/O - thin epoll/kqueue wrapper

“‘Dear kernel, what happened since | last asked?”
Windows support through |[OCP and shims

* Not as metal here

Foundation for Async |/O and event loops

MiIo

impl Server {

Fcho Server

extern crate mio;

#[macro_use] extern crate log;
extern crate env_logger;

use fn new(sock: Tcplistener) -> Server { .
i s /// Forward a readable event to an established connection.
use :{Error, ErrorKind}; erver { Y
sock: sock,

use /// Connections are identified by the token provided to us from the event loop. Once a read has

/// finished, push the receive buffer into the all the existing connections so we can

/// broadcast.

fn readable (smut self, event_ loop: &mut EventLoop<Server>,
debug! ("server conn readable; token={:?}", token);
let message = try! (self.find connection by token (token).readable());

use
// I don't use Token(0) because kqueue will send stuff to Token(0)
// by default causing really strange behavior. This way, if I see
// something as Token(0), I know there are kqueue shenanigans

// going on.

token: Token (1),

use

token: Token) -> io::Result<()> {

use
use
use

if message.remaining()
return Ok(());

== message.capacity() { // is_empty

// SERVER is Token(l), so start after that
// we can deal with a max of 126 connections
conns: Slab::new starting at (Token(2), 128) '

fn main() {

// Before doing anything, let us register a logger. The mio library has really good logging

/7 aF the _trace_ and 7deibugf levels. Hctxving a logger setup is invaluable when trying to } // TODO pipeine this whole thing
// figure out why something is not working correctly. } let mut pad tokens - Ve new() 7
env_logger::init().ok().expect ("Failed to init logger"); - !

/// Register Server with the event loop.

SocketAddr = FromStr::from str("127.0.0.1:8000") /117
/// This keeps the registration details neatly tucked away inside of our implementation.

fn register (smut self, event loop: &mut EventLoop<Server>) -> io::Result<()> {

// Queue up a write for all connected clients.

for conn in self.conns.iter mut() {
// TODO: use references so we don't have to clone
let conn_send buf = ByteBuf::from_slice (message.bytes());
conn.send_message (conn_send_buf)

let addr:
.ok() .expect ("Failed to parse host:port string");
let sock = TcpListener ind(&addr) .ok () .expect ("Failed to bind address"

event_loop.register_opt(
&self.sock,

let mut event_loop = EventLoop::new().ok().expect("Failed to create event loop");

self.token, .and_then(|_| conn.reregister (event_loop))
. 1
// Create our Server object and register that with the event loop. I am hiding away eadable (), Unwziigif(e‘:j}{éz\té seue message for (:71: (1217, conn.token, o)
// the details of how registering works inside of the 'Serverf#register’ function. One reason I | PollOpt::oneshot () /W .h N b(l{ b fq h o t:‘ ! : It 7 £il th
// really like this is to get around having to have 'const SERVER = Token(0)' at the top of my).or_else(lel { 1 1e ave ? mu : de orrow for e connection, so we cannot remove unti e
// file. It also keeps our polling options inside 'Server'. error! ("Failed to register server {:?}, }", self.token, e); oop 1s finishe

Err (e) bad_tokens.push (conn.token)

B 12N

let mut server = Server::new(sock);
server.register (smut event_loop) .ok () .expect ("Failed to register server with event loop");

info! ("Even loop starting...");
event_loop.run(&mut server).ok().expect ("Failed to start event loop"); ;/; Register Server with the event loop.
} /
/// This keeps the registration details neatly tucked away inside of our implementation.
fn reregister (&mut self, event loop: &mut EventLoop<Server>) {
event_loop.reregister(
&self.sock,
self.token,

for t in bad_tokens {
self.reset_connection(event loop, t);

}

struct Server { Ok ()

// main socket for our server

sock: Tcplistener,
e . EventSet: : readable (), fn reset_connection(smut self, event_loop: &mut EventLoop<Server>, token: Token) {
f 1f.tok == ki
// token of our server. we keep track of it here instead of doing 'const SERVER = Token(0) . PollOpt::edge() | PollOpt::oneshot () itose tolen htoden { .
token: Token,) .unwrap_or_else(le| {) 1eve1{1t7 oop.shutdown () ;
else

error! ("Failed to reregister server {:?}, self.token, e);
let server_ token = self.token;
self.reset_connection(event_loop, server_token);

i}l '

{221,

debug! ("reset connection; token={:?}", token);

// a list of connections _accepted by our server
—aceepted_ by self.conns.remove (token) ;

conns: Slab<Connection>,

/// Find a connection in the slab using the given token.
fn find_connection_by_token<'a>(s&'a mut self, token: Token)
smut self.conns[token]

impl Handler for Server { /// BAccept a _new_ client connection.

type Timeout = (); "
type Message = (); /// The server will keep track of the new connection and forward any events from the event loop
/// to this connection.)
{

-> &'a mut Connection {

}

fn ready(smut self, event_loop: &mut EventLoop<Server>, token: Token, events: EventSet) { fn accept (émut self, event_loop: &mut EventLoop<Server>)
debug! ("events = {:2}", events); debug! ("server accepting new socket");
ass:itf(tzken ! ;ok;n(o)v v-[ngg]. Received event for Token(0)"); /// B stateful wrapper around a non-blocking stream. This connection is not
// Log an error if there is no socket, but otherwise move on so we do not tear down the /// the SERVER connection. This connection represents the client connections

if events.is error() { // entire server. /// _accepted_ by the SERVER connection.

warn! ("E;ror event for {:?}", token); let sock = match self.sock.accept() { stru;; EOHZTCtlon k() “ .

self.reset connection(event loop, token); Ok(s) => { andle to the accepted socket

return; - match s { sock: TcpStream,
} Some (sock) => sock,)

None => { // token used to register with the event loop

if events.is_hup() { error! ("Failed to accept new socket"); token: Token,

trace! ("Hup event for {:?}", token); self.reregister (event_loop); . .

self.reset connection(event loop, token); return; // set of events we are interested in

return; B - } interest: EventSet,

}
} . // messages waiting to be sent out
: Vec<B: Buf>,

// We never expect a write event for our ‘Server' token A write event for any other token Err(e) => { send_gqueue ec<ByteBu

error! ("Failed to accept new socket, {:?}", e); !

self.reregister (event loop);
return; - impl Connection {

, fn new(sock: TcpStream,

// should be handed off to that connection.
if events.is writable() {
trace! ("Write event for {:?}", token);

s s -> Connection
assert! (self.token token, "Received writable event for Server"); ¢

token: Token)

}i Connection {
self.find connection by token (token).writable () sock: sock,
.and_then(| | self.find connection by token (token).reregister (event loop)) // “Slab#insert_with’ is a wrapper around 'Slab#insert’. I like “#insert_with' because I token: token,
.unwrap_or_else(|e| { // make the 'Token' required for creating a new connection. X
warn! (;Write event failed for {:?}, {:?}", token, e); // // new connecFlons are only listening for a hang up event when
self.reset connection (event loop, token); // “Slab#insert’ returns the index where the connection was inserted. Remember that in mio, // they are first created. we always want to make sure we are
N - - // the Slab is actually defined as 'pub type Slab<T> = ::slab::Slab<T, ::Token>; . Token is // listening for the hang up event. we will additionally listen
} // just a tuple struct around ‘usize' and Token implemented :slab::Index’ trait. So, // for readable and writable events later on.
// every insert into the connection slab will return a new token needed to register with interest: EventSet::hup(),
// A read event for our ‘Server’ token means we are establishing a new connection. A read // the event loop. Fancy...

. s T Ve ’
// event for any other token should be handed off to that connection. match self.conns.insert_with(|token| { send_gueue: Vec::new()

if events.is_readable() { debug! ("registering {:?} with event loop", token);
trace! ("Read event for {:?}", token); Connection::new(sock, token) }
if self.token == token { oA
self.accept (event 1oop); Some (token) => { /// Handle read event from event loop.
} else { B // 1f we successfully insert, then register our connection. /11
match self.find_connection_by_token(token).register(event_loop) { /// Currently only reads a max of 2048 bytes. Excess bytes are dropped on the floor.
N - - /17
self.readable (event_loop, token) ok (_) => {1},
“and then(| | self.find connection by token (token).reregister (event loop)) Err(e) => | %; 'fl?e recieve buffer is sent back to 'Server’ so the message can be broadcast to all
.unwrap or else(|e| { error! ("Failed to register {:?} connection with event loop, {:?}", token, e); istening connections.
warn! (;Read event failed for {:?}: (:2}", token, e); self.conns.remove (token) ; fn readable (&mut self) -> io::Result<ByteBuf> {
self.reset connecti event loop, token); }) . . .
reset_connection (event_loop ™ // ByteBuf is a heap allocated slice that mio supports internally. We use this as it does

) i), ' // the work of tracking how much of our slice has been used.
¥ None => { // after reading
) // 1f we £ail to insert, ‘conn' will go out of scope and be dropped. // nttps://github.com/carllerche/mio/blob/eed4855c627892b88£7ca68d3283cbc708alc2b3/src/io. rs#1.23-27
) error! ("Failed to insert connection into slab"); // as that seems like a good size of streaming. If you are wondering what the difference
) // between messaged based and continuous streaming read
S bt tre LSS atramlbmtrem]l A

I chose a capacity of 2048

I N N JE I I T T S S R PR S

Async |/O Ecosystem

eventual - threadsafe futures
MIOCO - coroutines on MIo

gj - single-threaded futures and 1/O
Lots of experience outside of Rust
* Finagle in Scala at Twitter

 Wangle in C++ at Facebook

What's a Future

* |n computer science, future, promise, delay, and
deferred reter to constructs used for synchronizing
IN some concurrent programming languages. They
describe an object that acts as a proxy for a result
that is initially unknown, usually because the
computation of its value is yet incomplete.

What's a Future

trait Future {
type Item;
type Error;

fn schedule<?F>(&mut self, f: F)
where F: FnOnce (Result<Item, Error>)
+ Send + ‘static;

sn’t that callback hell?

fn num downloads () —-> impl Future<i32Z> {
let url = “https://crates.io/summarvy”;
http::get (url)
.and then (Json::parse)
.map(lJ| j.get (“num downloads”))
.and then(132Z2::from str)

Futures 1IN Rust

 Ownership is key, a future is resolved once
* [rait allows zero-cost implementations

e Borrows from Iterator for composition and
ergonomics

» Cancellation of futures is a core primitive

Cancellation

let socket = listener.accept();
let reg = socket.map (process);

let timeout = timeout ms (1 000);
let both = socket.select (timeout)
event loop.awalt (both);

e |f timeout happens process Is never called

Future of Futures

application 2

application 1

Future of Futures

Requires consensus
_ots to iImplement “finagle.rs”
_ots to talk about

eventual

Upcoming
N 2016

- '\‘f

i Rust Belt Rust Rus;c)Eest
Conference
- October 27th & 28th, 2016

Conferences

e RustConf 2016, 9/9-9/10 in Portland
e RustFest 2016, 9/17-9/18 in Berlin

* Rust Belt Rust, 10/27-10/28 in Pittsburgh

Rust Releases

* 1.9 released May 26
e |ncludes stabilization of std: :panic
 1.10 to be released July 7

e |ncludes panic=abort, panic hooks, and Unix
sockets

New features

Incremental compilation
Non-zeroing drop

Error messages v2
Flexible borrowing

IDE Initiative

rustup NDKs

impl Trait

Specialization

pub(restricted)
WebAssembly
rustfmt

plugins

GC integration

macro_rules! v2

FOCUS NOW

* Branching out: taking Rust to new places
* Doubling down: infrastructure investments

e /Zeroing In: closing gaps in our key features

